On Commutators of Isometries and Hyponormal Operators
Authors: not saved
Abstract:
A sufficient condition is obtained for two isometries to be unitarily equivalent. Also, a new class of M-hyponormal operator is constructed
similar resources
Hyponormal Operators with Rank-two Self-commutators
In this paper it is shown that if T ∈ L(H) satisfies (i) T is a pure hyponormal operator; (ii) [T ∗, T ] is of rank-two; and (iii) ker [T ∗, T ] is invariant for T , then T is either a subnormal operator or the Putinar’s matricial model of rank two. More precisely, if T |ker [T∗,T ] has the rank-one self-commutator then T is subnormal and if instead T |ker [T∗,T ] has the ranktwo self-commutato...
full textON p-HYPONORMAL OPERATORS
In this paper we show that p-hyponormal operators with 0 / ∈ σ(|T | 1 2 r ) are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.
full textOn the Hyponormal Property of Operators
Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...
full textPolynomially hyponormal operators
A survey of the theory of k-hyponormal operators starts with the construction of a polynomially hyponormal operator which is not subnormal. This is achieved via a natural dictionary between positive functionals on specific convex cones of polynomials and linear bounded operators acting on a Hilbert space, with a distinguished cyclic vector. The class of unilateral weighted shifts provides an op...
full textRemarks on Hyponormal Operators and Almost Normal Operators
In 1984 M. Putinar proved that hyponormal operators are subscalar operators of order two. The proof provided a concrete structure of such operators. We will use this structure to give a sufficient condition for hyponormal operators T with trace-class commutator to admit a direct summand S so that T ⊕ S is the sum of a normal operator and a HilbertSchmidt operator. We investigate what this suffi...
full textHyponormal Composition Operators
In [1] D. Harrington and R. Whitley examined several questions of seminormality for composition operators. In that article they raise the question of finding a measure theoretic characterization of hyponormality for composition operators. In this article we establish criteria for hyponormality for weighted composition operators. By restricting attention to the case of weight function equal to 1...
full textMy Resources
Journal title
volume 1 issue 1
pages -
publication date 1989-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023